A NOVEL SYNTHESIS OF 1-CITRONELLOL FROM 1-MENTHONE

Tatsuya Shono, Yoshihiro Matsumura, Kenichi Hibino, and Shintaro Miyawaki

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University,

Yoshida, Kyoto, Japan

(Received in Japan 7 February 1974; received in UK for publication 25 February 1974)

The synthetic method¹⁾ involving hydroalumination of optical active 3,7-dimethyl-1,6-octadiene as a key step is the only practical one to prepare l-citronellol, although d-citronellol is readily obtainable from d-citronellal²⁾, and dl-citronellol from geraniol and citral³⁾. Moreover, l-menthone (1-1), which may be considered to be a suitable precursor of citronellol, is connected with dextrorotatory citronellol. Thus, the conversion of 1-1 to its d-isomer is essential to accomplish the preparation of l-citronellol from l-1. The almost quantitative formation of menthenone (3) from the anodic oxidation of menthenyl acetate (2), which has been conclusively established in our previous study⁴⁾, may suggest the potentiality of the anodic method in the conversion of 1-1 to d-1.

In the present paper, we wish to report a novel synthetic method of 1-citronellol from 1-menthone involving the anodic transformation of 2 to 3 as one of the key steps. Scheme I illustrates the synthetic route and yields in each step.

The anodic oxidation of 2, prepared by esterification of 1, in acetic acid containing tetraethylammonium p-toluenesulfonate as a supporting electrolyte gave 1-3 after 2.5 F/mol of electricity was passed.

1295

The epoxy ketone (4), formed by the treatment of 1-3 with 30% H₂O₂ under basic condition⁵⁾, could be easily reduced to the corresponding enol (5) by stirring with 100% hydrazine hydrate followed by the addition of a small amount of acetic acid at 0°. The oxidation of 5 with Jones reagent⁶⁾ in acetone yielded d-menthenone (d-3), which was then hydrogenated to d-menthone (d-1) under atmospheric pressure using palladium-charcoal. The Baeyer-Villiger oxidation⁷⁾ of d-1 resulted in the exclusive formation of the lactone (6), and 6 gave the corresponding diol (7) upon reduction with lithium aluminium hydride. The diol 7 could also be prepared by another route shown in scheme II. Scheme II

When 7 was treated with potassium bisulfate, 1-citronellol (8) and its isomer (9) were obtained in 60% and 25% yields respectively. The overall optical yield of 8 was quantitative. Physical property and optical purity of products are summarized in Table I.

	b.p (°C/mm)	$[\alpha]_{D}$ (temp. °C)	$[\alpha]_D$ (temp. °C) ^{Lit.}
1 -1	118/41	$-17 (20^{\circ}) (57.5\%)^{a}$	-29.6 (20°) ⁸⁾
d-2	73/4	-63.0 (31°)	+64~ +69 ⁹⁾
1-3	77/10	-67.2 (31°)	-78.4 (16°) ⁸⁾
4	50/0.1	+59 .1 (31°)	
5	70/3	+153	+165 (25°) ¹⁰⁾
d-3	98/22	+67.2 (26°)	
6	109/4	+19.2 (25°)	
7	114/2.5	+11.3 (25°)	
8	118/29	-3.11 (20°) (114%) ^{b)}	-4.76 (20°) ¹⁾

Table I. Physical Property and Optical Purity of 1-8.

a) The optical purity of 1-1.

b) The optical yield of **8**; It is almost 100% if evaluated on the basis of the reported value¹⁾ of the specific rotation of d-form, $[\alpha]_D^{20}$ +5.22°.

References

- 1) R. Rienacker and G. Ohloff, Angew. Chem., 73, 240 (1961)
- 2) H. E. Eschinazi, J. Org. Chem., 26, 3072 (1961).
- 3) R. Adams and B. S. Garvey, J. Amer. Chem. Soc., 48, 477 (1926)
- 4) T. Shono, Y. Matsumura and Y. Nakagawa, to be published.
- 5) R. L. Wasson, H. O. House, Org. Syn. Col. Vol. <u>4</u>, 552 (1963).
- 6) C. Djerassi, R. R. Engle, A. Bowers, J. Org. Chem., 21, 1547 (1956).
- 7) A. Baeyer and V. Villiger, Ber., 32, 3625 (1899).
- 8) R. Read and G. J. Robertson, J. Chem. Soc., 1926, 2209.
- 9) H. Schmidt, <u>Ann. Rept. Essent</u>. <u>Oils, Synthesis Perfumes, 1938</u>, 124. Chem. <u>Abstr. 33</u>,3331.
- 10) D. Malcolm and J. Road, J. Chem. Soc., 1939, 1037.